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Abstract
We consider nematic liquid crystals in a bounded, convex polyhedron described
by a director field n(r) subject to tangent boundary conditions. We derive lower
bounds for the one-constant elastic energy in terms of topological invariants.
For a right rectangular prism and a large class of topologies, we derive upper
bounds by introducing test configurations constructed from local conformal
solutions of the Euler–Lagrange equation. The ratio of the upper and lower
bounds depends only on the aspect ratios of the prism. As the aspect ratios are
varied, the minimum-energy conformal state undergoes a sharp transition from
being smooth to having singularities on the edges.

PACS numbers: 61.30.Jf, 11.10.Lm, 61.30.Dk, 61.30.Hn, 11.27.+d

The continuum theory of liquid crystals [1] is a prototypical nonlinear field theory in which
topological considerations play a fundamental role [2–4], both in equilibrium (e.g., [5, 6])
and dynamical phenomena (e.g., [7]). Nematic liquid crystals are represented by a director
field n(r), which describes the mean local orientation of the constituent rod-like molecules.
In confined geometries, boundary conditions, which depend on the properties of the substrate,
can play a significant role (see, e.g., [8]).

In this letter, we consider director fields in a bounded, three-dimensional convex
polyhedron P. While natural theoretically, the problem also has a technological motivation;
polyhedral geometries have been proposed as a mechanism for engendering bistability in
liquid crystal display cells [9, 10]. Polyhedral cells can support two (or more) energetically
stable director configurations with contrasting optical properties. Power is required only to
switch pixel states but not to maintain them. Bistable cells offer the promise of displays with
higher resolution and requiring less power than is available with current technologies based
on monostable cells.

We suppose P has strong azimuthal anchoring, so that n satisfies tangent boundary
conditions—on the faces of P, n must be tangent to the faces. Tangent boundary conditions
imply that, on the edges of P, n is parallel to the edges, and, therefore, is necessarily
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discontinuous at the vertices. We restrict our study to configurations which are continuous
everywhere else, i.e. as continuous as possible. As P is simply connected, we can then regard
n(r) as a unit-vector field, rather than a director field. We obtain lower bounds for the elastic
energy of n in terms of its topological invariants and, for a rectangular prism, upper bounds,
which differ from the lower bounds only by a geometry-dependent factor. The upper bounds
are obtained from local conformal solutions of the Euler–Lagrange equation, whose energetics
indicate the onset of edge singularities as the prism becomes cubic.

It turns out that tangent boundary conditions produce a large family of topologically
distinct configurations. A complete classification is given in [11], whose results we briefly
summarize. Tangent unit-vector fields on P can be classified up to homotopy (i.e., continuous
deformations) by a family of invariants: the edge orientations, kink numbers and trapped areas.
The edge orientations are just the values of n on the edges of P, and therefore are essentially
signs. The kink numbers determine the number of times n winds along an (outward-oriented)
path on a face of P which joins a pair of adjacent edges. On such a path, the initial and final
values of n are determined by the edge orientations; in between, n describes a curve on the
circle of unit vectors tangent to the face. The shortest curve between the endpoints is assigned
kink number 0. In general, the kink numbers are integers. The trapped areas, �a , are defined
as follows. Let Ca be a surface inside P which separates the vertex a from the other vertices.
Then �a is the area of the region n(Ca) on the unit two-sphere. This may be written as∫
Ca D · dS, where dS is the outward-oriented area element on Ca , and

Dj = 1
2εjkl(∂kn × ∂ln) · n. (1)

D may be regarded as the vector field dual to the pull-back, n∗ω, of the outward-oriented area
form ω on the sphere (in polar coordinates, ω = sin θ dθ ∧ dφ). �a is independent of the
choice of Ca , and may be thought of as the degree of a fractional point defect at a. �a need
not be integral, but the allowed values of �a for given edge orientations and kink numbers
differ by integer multiples of 4π (complete coverings of the sphere). These integers are the
wrapping numbers. The invariants satisfy certain sum rules, which follow from the fact that n
is continuous away from the vertices. The sum of the kink numbers on each face is determined
by the edge orientations, while the trapped areas sum to zero. All values of the invariants
consistent with the sum rules can be realized, and two configurations are homotopic if and
only if their invariants are the same.

In the continuum theory, the energy of n is given by the elastic, or Frank–Oseen,
energy [1]

E =
∫

P

[K1(div n)2 + K2(n · curl n)2 + K3(n × curl n)2 + K4 div((n ·∇)n − (div n)n)] dV.

(2)

Tangent boundary conditions imply that the contribution from the K4-term, which is a pure
divergence, vanishes. In the so-called one-constant approximation, the remaining elastic
constants K1, K2 and K3 are taken to be the same. In this case, (2) simplifies to

E = K

∫
P

(∇n)2 dV = K

∫
P

3∑
j=1

(∂j n)2 dV. (3)

Stable (or quasi-stable) configurations are minima (or local minima) of the energy. In the one-
constant approximation, local minimizers satisfy the Euler–Lagrange equation and boundary
conditions

�n = (n · �n)n, (c · n)∂P = (c × ∇cn)∂P = 0, (4)
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where c is the outward unit-normal on the boundary ∂P of P and ∇c denotes the derivative
along c (the normal derivative here); the condition on ∇cn ensures there is no boundary
contribution to the first-order variation of the elastic energy. (Minimizers of the energy (3) are
called harmonic maps in the mathematics literature.)

Our first result is a lower bound for the energy (3) in each homotopy class. The derivation
extends an argument from a seminal paper of Brezis et al [5] to the polyhedral boundary-value
problem we are considering here. Below we restrict to the case where ∇n is smooth away
from the vertices. In fact, the bound is good provided only that ∇n is square-integrable [12].

Since n is normalized, the partial derivatives ∂j n, j = 1, 2, 3, are orthogonal to n, and
therefore are linearly dependent. Thus, at each point r, there is at least one direction, w say, in
which the derivative of n vanishes. Let us introduce unit vectors u and v which together with
w define an orthonormal frame. Then,

(∇n)2 = (∇un)2 + (∇vn)2 � 2|∇un × ∇vn|, (5)

where equality holds if and only if ∇un and ∇vn are orthogonal and of equal length.
From (1), the right-hand side of (5) is just 2|(u × v) · D|, which in turn is just equal to
2|D|, since, by inspection, D is orthogonal to u and v. Then,

(∇n)2 � 2|D|. (6)

Let ξ(r) be a continuous scalar function with piecewise continuous gradient such that
|∇ξ | = 1. Then, |D| � D · ∇ξ . Let P̂ be a domain obtained by excising from P vanishingly
small neighbourhoods of each vertex. From (3) and (6), it follows that

E � 2K

∫
P̂

D · ∇ξ dV. (7)

But D has zero divergence, as follows from the fact that area-form ω is closed (as well as from
direct calculation). Integrating by parts, we get

E � 2K

∮
∂P̂

ξD · dS. (8)

The boundary of P̂ , denoted as ∂P̂ , consists of (parts of) the faces of P as well as the boundaries
of the excised regions. But D vanishes on the faces of P̂ , as tangent boundary conditions
imply that the tangential derivatives of n are parallel to each other there. On the boundaries of
the excised regions, ξ can be set to its values ξa at the vertices. Thus, the integral

∫
∂P̂

ξD · dS
reduces to a weighted sum of fluxes of D through the excised boundaries. These fluxes are
just the trapped areas. We obtain the lower bound

E � 2K
∑

a

ξa�a. (9)

To proceed, note the values ξa are constrained; since |∇ξ | = 1, we must have |ξa −ξb| � Lab,
where Lab is the length of the edge between vertices a and b. Conversely, given a set of values
ξa satisfying these inequalities, we can construct a continuous function ξ(r) which interpolates
between these values, and for which ∇ξ is piecewise continuous with unit norm (for example,
let ξ(r) = maxa(ξ

a − |r − a|)). Therefore, we can express the lower bound (9) in terms of
the trapped areas and the lengths of the edges of P,

E � 2K max
ξa :|ξa−ξb|�Lab

∑
a

ξa�a. (10)

Equation (10) specifies a linear optimization problem, which can be solved by standard
methods.
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We note that because
∑

a �a = 0, the optimal solution ξa is in general only determined
up to an overall additive constant. If the one-constant approximation is dropped, K in (10) can
be replaced by the smallest of the three elastic constants K1,K2 and K3.

Next, we consider the case where P is a right rectangular prism with sides of length
Lx � Ly � Lz. Moreover, within P, we consider configurations (and their homotopy classes)
which are reflection-symmetric about the mid-planes of P. That is

n(Lx − x, y, z) = n(x, Ly − y, z) = n(x, y, Lz − z) = n(x, y, z) (11)

(we plan to treat more general geometries and homotopy classes in the future). Clearly,
a reflection-symmetric configuration is determined by its values in the octant of the prism,
denoted by R = {

0 � rj � 1
2Lj

}
, as are its invariants. In particular, the trapped areas at two

vertices are either the same or differ by a sign according to whether the vertices are related by
an even or odd number of reflections. Let �0 denote the trapped area at the origin. Taking
ξa in (10) (optimally) to be Lz or 0 according to whether �a is |�0| or −|�0|, we obtain the
explicit lower bound E � E−, where

E− = 8KLz|�0|. (12)

In the remainder of this letter, we introduce a family of reflection-symmetric configurations
which are local solutions of the Euler–Lagrange equation (4). From these we infer upper
bounds for the energy as well as the onset of edge singularities as the geometry is varied.

Candidates for low-energy configurations are those for which (6) becomes an equality.
This is so if, on R, n is radially constant (i.e., n(λr) = n(r)) and conformal. Here, conformal
means that the map t �→ ∇tn(r) from vectors t orthogonal to r̂ to vectors ∇tn(r) orthogonal to
n(r) preserves orientation, angles and ratios of lengths (or else vanishes). If n is radially
constant then D is radial (cf (1)), while if n is also conformal, D = 1

2 (∇n)2r̂. It is
straightforward to verify that radially constant, conformal configurations satisfy (4) in R

(but fail to on the mid-planes of P, where the normal derivatives of n are discontinuous).
Suppose n is a reflection-symmetric configuration which is radially constant and

conformal in R (below we will show how to construct such configurations). Then, from
(3), and using reflection symmetry, we get

E = 8K

∫
R

(∇n)2 dV = 16K

∫
R

r̂ · D dV = 16K

∫
∂R

rD · dS, (13)

where we have used ∇ · D = 0. We obtain an upper bound E+ for E by replacing r by its
maximum value on ∂R, namely 1

2

(
L2

x + L2
y + L2

z

)1/2
. The integral which remains is just the

flux of D through R. As tangent boundary conditions imply there is no contribution from the
exterior faces of R (i.e., x = 0, y = 0 or z = 0), this just gives the trapped area. Thus,

E+ = 8K
(
L2

x + L2
y + L2

z

)1/2|�0|. (14)

Like E−, E+ is proportional to |�0|, and E+/E− = (
a2

xz + a2
yz + 1

)1/2
, where aij = Li/Lj

denote the aspect ratios of the prism. For the cube, this ratio is
√

3.
It remains to construct radially constant, conformal configurations n(r) in R satisfying

tangent boundary conditions. For this, it is convenient to introduce the stereographic projection
(ex, ey, ez) �→ (ex + iey)/(1 + ez) from the sphere to the extended complex plane C

e.
Projecting both r and n, we obtain a complex-valued function f (w) of complex argument w

given by (
nx + iny

1 + nz

)
(x, y, z) = f

(
x + iy

r + z

)
. (15)
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The domain of f is the stereographic image of R, which is the quarter-disc Q given by |w| � 1
and Re w, Im w � 0. n conformal is equivalent to f locally analytic.

The form of f is determined by tangent boundary conditions. Under stereographic
projection, the xz-face is mapped to the real w-axis, so we require that (i) f (w) is real if w

is real. Similarly, the yz- and xy-faces are mapped to the imaginary axis and the unit circle,
respectively, so we require that (ii) f (w) is imaginary if w is imaginary and (iii) |f (w)| = 1
if |w| = 1. To proceed, we assume that f has a meromorphic extension from Q to C

e. Then
the conditions (i)–(iii) may be continued to the following functional equations:

f̄ (w) = f (w), (16a)

f̄ (−w) = −f (w), (16b)

f (w)f̄ (1/w) = 1, (16c)

where f̄ is defined (as usual) by f̄ (w) = f (w̄). Together, (16a) and (16c) imply that
f (w)f (1/w) = 1, which in turn implies that if w is a zero of f , then 1/w is a pole. f

meromorphic implies the number of zeros and poles in the unit disc must be finite (otherwise
there would be an accumulation of one or the other). It follows that f has only a finite number
of zeros and poles in C

e, so that f is rational.
Equations (16b) and (16c) imply that, if w is a zero of f , then so are w̄ and −w, and

similarly if w is a pole. One can then show that every reciprocal pair (w, 1/w) of zeros and
poles has a unique representative in Q. For convenience, we divide these representatives into
three groups: the strictly real r1, . . . , ra , with 0 < rj < 1 (as (16c) rules out zeros and poles
of modulus one); the strictly imaginary is1, . . . , isb, with 0 < sk < 1 and the strictly complex
t1, . . . , tc, with 0 < |tl| < 1. In addition, w = 0 is a zero or pole of odd order, as is implied
by (16a) and (16b). Then, f is given by

f (w) = εwn

a∏
j=1

(
w2 − r2

j

r2
j w2 − 1

)ρj b∏
k=1

(
w2 + s2

k

s2
kw

2 + 1

)σk c∏
l=1

( (
w2 − t2

l

)(
w2 − t̄2

l

)
(
t2
l w2 − 1

)(
t̄2
l w2 − 1

)
)τl

. (17)

Here, ρj is 1 or −1 according to whether rj is a zero or a pole (note that the rj s need not be
distinct), and similarly for σk and τl . n, an odd integer, determines the order of the zero or pole
at the origin. The coefficient ε, given by (−1)af (1), is equal to ±1 (from (16a) and (16c)).
It is straightforward to verify that (17) satisfies tangent boundary conditions, and therefore
characterizes, via (15), the radially constant, conformal, tangent unit-vector fields n in R for
which f has a meromorphic extension to C

e. We remark that rational functions have been
used extensively as the basis for an ansatz for skyrmions, minimum-energy configurations of
fixed baryon number (i.e., degree) of localized, nonlinear SU(2)-valued fields in R

3. The
ansatz yields very good descriptions of the (numerically determined) energies and topologies
of the true minimizers (see, e.g., [13–15]).

The values of the topological invariants can be computed in terms of the parameters of f .
From (1), straightforward calculation gives D = Ar̂, where A, regarded as a function of w, is
given by

A = 4|f ′|2/(1 + |f |2)2. (18)

It follows that �0 = ∫
Q
A d2w. The conditions (16) above imply that A is invariant under

w �→ −w, w �→ w̄ and w �→ 1/w. Therefore, 8�0 is given by the integral of A over C
e. But

this quantity is just (4π times) the degree of f , regarded (inverse stereographically) as a map
from S2 into itself. The degree of a meromorphic function is just the number of its zeros (or
any other value) counted with multiplicity. Therefore,

�0 = 1
2 (|n| + 2(a + b) + 4c)π. (19)



L578 Letter to the Editor

The edge orientations are easily determined from the values of f at 1, i and 0 (the images of
the x, y and z-edges, respectively). Let ex = ±1 according to whether n = ±x̂ along the
x-edge, and similarly for ey and ez. Then,

ex = ε(−1)a, ey = ε(−1)b(−1)(n−1)/2, ez = sgn n. (20)

The kink number kz along the z-face can be computed from the change in phase of f along
the quarter circle of |w| = 1 between 1 and i. The kink numbers kx and ky along the x- and
y-faces can be computed by counting zeros of f with an appropriate sign along the respective
intervals [0, 1] and [0, i]. The result is

kx = − 1
2 (−1)bey

(
b∑

k=1

(−1)kσk + 1
2 (1 − (−1)b)ez

)
,

ky = − 1
2 (−1)aex


 a∑

j=1

(−1)jρj + 1
2 (1 − (−1)a)ez


 , (21)

kz = 1
4 (exey − n) − 1

2

a∑
j=1

ρj − 1
2

b∑
k=1

σk −
c∑

l=1

τl.

As remarked above, the kink numbers and edge orientations determine the trapped areas up
to an integer multiple of 4π . Moreover, trapped areas with any such multiple can be realized.
For conformal configurations (17), it can be shown, using (19)–(21), that all values of the
trapped area �0 greater than �min = 2π

(|kx | + |ky | + |kz| + 1
4

)
can be realized. Anticonformal

configurations (obtained by replacing w with w̄) allow for all values of �0 less than −�min.
Further details along with a discussion of the remaining values of �0 will be given elsewhere
[16].

It is possible to get better upper bounds by evaluating the integrals in (13) exactly. We do
this explicitly for the configuration f (w) = w. We call this configuration unwrapped, because
it is topologically the simplest possible; its kink numbers are zero and its trapped area has the
minimum allowed value. There are in fact eight distinct unwrapped configurations generated
by the transformations w �→ −w, 1/w and w̄. All have the same energy. For f (w) = w, it is
readily computed that D = r/r3. From (13), the contribution to the energy from the interior
face

{
x = 1

2Lx

}
of R is given by

8KLx

∫ 1
2 Ly

0

∫ 1
2 Lz

0

dy dz

1
4 L

2
x + y2 + z2

= 2ayxazxKLx

∫ 1

0

∫ 1

0

u− 1
2 v− 1

2

1 + a2
yxu + a2

zxv
du dv. (22)

The last integral may be identified with an integral representation of the Appell hypergeometric
function F2(α, β, β ′, γ, γ ′; s, t) [17], with parameters α = 1, β = β ′ = 1

2 , γ = γ ′ = 3
2 and

arguments s = −a2
yx and t = −a2

zx . The integrals over the two other interior faces of R are
evaluated similarly, while the integrals over the external faces vanish by tangent boundary
conditions. Thus, the unwrapped energy is

E0 = 8
∑

i

ajiakiKLiF2
(
1, 1

2 , 1
2 , 3

2 , 3
2 ,−a2

ji ,−a2
ki

)
, (23)

where i runs over x, y and z, and (i, j, k) is a cyclic ordering of (x, y, z). For a cube
(L = K = 1), this gives an upper bound of 15.3, about 20% more than E− = 4π .
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Figure 1. Scaled energy ε = E/V
1
3 of the conformal configuration w(w2 + s2)/(s2w2 + 1). Solid

curve: Lx = 20, Ly = 10, Lz = 1. Dashed curve: Lx = Ly = Lz = 1.

For conformal configurations other than the unwrapped ones, the energy 16K
∫
∂R

rD · dS
depends on the positions rj , sk, tl of the zeros and poles, and therefore can be minimized
with respect to these parameters. Since

∫
∂R

D · dS is the trapped area �0, and therefore is
parameter independent, it is evident that the minimum energy is achieved by making |D| small
at points of ∂R where r is large, and large at points where r is small. The local minima of
r are just the corners of R on the x-, y- and z-edges, with projections w = 1, i and 0. For a
cube, the corners are all equally close to the origin, and the minimum energy is approached
in the singular limit in which the zeros and poles of f are made to coalesce, pairwise, at 1, i
or 0 (so that, from (18), |D| = A is made to diverge there), leaving a single zero or pole
at w = 0. In this limit, all the topologically nontrivial behaviour (kinking and wrapping)
concentrates at the edges, while away from the edges the configuration becomes unwrapped.
This is reminiscent of the dipole configurations of [5]. However, for rectangular prisms, the
minimum energy within a conformal family may be realized for a nonsingular configuration.
This is illustrated in figure 1, which shows the energy (scaled by the cube root of the volume)
of the configuration f (w) = w(w2 + s2)/(s2w2 + 1). For a cube (dashed curve), the energy
approaches a minimum as s approaches 1, corresponding to a configuration which is singular
along the y-edge. For Lx = 20, Ly = 10, Lz = 1 (solid curve), the energy has a minimum
for s between 0 and 1, corresponding to a smooth configuration. (The nontrivial kink number
|kz| = 1 rules out conformal deformations of f to a configuration which is singular along the
shortest z-edge.) Numerical solutions of the Euler–Lagrange equations (4) exhibit the same
transition [16]. One would expect to observe the smooth configurations but not necessarily the
singular ones; in the vicinity of such an edge singularity, the liquid crystal could melt, losing
orientational order, and then relax to an unwrapped state.

The preceding analysis indicates that the stability of topologically nontrivial tangent
director configurations in rectangular prisms depends on the (purely geometrical) aspect
ratios, a phenomenon which will be the subject of further investigation.
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